China best Shaft, Motor Axis, Axle, Roller, Long Shaft, Long Roller axle arm

Product Description

material: displaying shaft is 1045, any special need is OK for us.
quantity capacity: 25000pcs/month
package: unit, then to wooden case. or as customize design
delivery: 5000pcs 22-25days
              50000pcs 25-30days
use place: motor assembling.
As an experienced manufacturer, We`ve been engaged in OEM production since 2006, and we now own a 13000m2 working area. Our production capacity is up to diameter 400mm & length 1000mm (small are middle ones are OK too), and our management system is ISO9001:2015.

We can print batch mark on surface for quality tracking if need. Production records can be reviewed for up to 5 years

 

Quality warranty: as drawings. If not, we will return the payment of weak part, or make new lot to replace them with free.

Payment: in order to reduce your quality risk and funds pressure, 20% deposit and balance in 30days after BOL date are negotiable.

Delivery: about 25days regularly. It`s affected by quantity, technology need etc. details.

package: small parts: 10pcs*N per plastic bag, then to wooden case
                big parts: unit, then to wooden case
                wooden material:  clad plate without any original wooden material.
                “Hengyu Machining” as factory mark on wooden case for tracking work.

Our quality & service have been proved by several famous groups in these years including Chinese CHR, Bombardier, etc. E-catalogues will be sent if needed.

5W:
Whom we are
We`re specialized CNC precision machining manufacturer, with abundant experience. Our business covers some continents market and places. We have bright advantage in quality as need.

What we can do?
We supply metallic production & design service to OEM, ODM and end-user wholly, promptly and correctly.

Who is our client
Our clients include OEMs and end-user companies whose products go through complex and hi-volume production and manufacturing processes prior to CZPT the consumers. For these companies, we`re remarkable and reliant co-worker. Our clients include train manufacturer, watercraft manufacturer, food(drinking) equipment manufacturer, analyzer manufacturer, medical instruments manufacturer, construction equipment manufacturer etc.

What you could expect
professional, prompt and correct communication
eligible, longevous and precision products
credit and prompt delivery

Why should you choose us?
We promises to offer excellent service, quality and delivery to build business credit – create mutual credit, long-time business relations.

Any interest, please feel free to contact us. we`ll reply you in 24 hours. thanks!

 

Application: Auto and Motorcycle Accessory, Machinery Accessory, ATM Machinery
Standard: GB, JIS Code, ASME
Surface Treatment: 0.8 Roughness
Samples:
US$ 55/Piece
1 Piece(Min.Order)

|

Order Sample

as drawing
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle shaft

Are there potential challenges or limitations to using specific axle shafts?

Using specific axle shafts in vehicles can come with challenges or limitations depending on various factors such as the design of the vehicle, the intended use, and the specific characteristics of the axle shafts. Here’s a detailed explanation of potential challenges or limitations associated with specific axle shafts:

  • Compatibility: One challenge is ensuring compatibility between the axle shafts and the vehicle’s drivetrain configuration, suspension system, and overall design. Axle shafts must be designed to fit the specific vehicle model and its corresponding drivetrain layout. Using incompatible axle shafts can lead to improper fitment, compromised performance, or even mechanical failures.
  • Strength and Durability: Depending on the vehicle’s weight, power output, and intended use, specific axle shafts may have limitations in terms of strength and durability. Axle shafts subjected to heavy loads, aggressive driving, or off-road conditions may require higher-strength materials or specialized designs to withstand the forces and torque applied to them. Using axle shafts that are not adequately designed for the vehicle’s demands can result in premature wear, bending, or breakage.
  • Performance Trade-offs: Different types of axle shafts offer different performance trade-offs. For example, solid axle shafts may provide durability and simplicity but can result in a harsher ride quality and limited independent wheel movement. On the other hand, CV (constant velocity) axle shafts offer smoother power delivery and greater wheel articulation but may have limitations in terms of torque capacity and durability under extreme conditions. It’s important to consider the specific requirements and priorities of the vehicle’s performance and select axle shafts accordingly.
  • Cost and Availability: Certain axle shafts, especially those designed for specialized applications or high-performance vehicles, may be more expensive or harder to source compared to standard axle shafts. Limited availability can pose challenges when it comes to replacement or upgrade options. Additionally, aftermarket axle shafts might not always meet the same quality standards as original equipment manufacturer (OEM) parts, which could impact their performance and reliability.
  • Modifications and Customization: Modifying or customizing axle shafts can introduce additional challenges. Altering axle shafts to accommodate different drivetrain configurations, wheel sizes, or suspension setups may require specialized knowledge, engineering expertise, and fabrication skills. Improper modifications can negatively affect the vehicle’s stability, handling, and safety.
  • Serviceability: Some specific axle shafts might have limited serviceability or require specialized tools or expertise for maintenance, repair, or replacement. This can impact the availability and cost of servicing the vehicle. It’s important to consider the long-term serviceability and support for specific axle shafts when selecting them for a vehicle.

It’s crucial to consult with knowledgeable professionals, such as automotive engineers or experienced mechanics, to ensure the appropriate selection and installation of axle shafts for a specific vehicle. They can provide valuable insights and guidance based on the vehicle’s requirements, intended use, and potential limitations associated with specific axle shafts.

In summary, potential challenges or limitations of using specific axle shafts include compatibility issues, limitations in strength and durability, performance trade-offs, cost and availability considerations, challenges related to modifications or customization, and serviceability concerns. A careful assessment of these factors is essential to ensure the optimal performance, safety, and reliability of the vehicle.

axle shaft

What is the role of axle shafts in the functionality and safety of a vehicle?

The axle shafts play a crucial role in the functionality and safety of a vehicle’s drivetrain. These components are responsible for transmitting torque from the differential or transaxle to the wheels, enabling power delivery and facilitating smooth vehicle operation. Here’s a detailed explanation of the role of axle shafts in the functionality and safety of a vehicle:

Power Transmission:

The primary function of axle shafts is to transfer rotational power from the engine to the wheels. When the engine generates torque, it travels through the transmission system and reaches the differential or transaxle. From there, the axle shafts transmit the torque to the individual wheels, allowing them to rotate and propel the vehicle forward or backward. Axle shafts ensure efficient power transmission, enabling the vehicle to accelerate, maintain speed, and climb inclines effectively.

Wheel Connectivity:

Axle shafts serve as the physical link between the wheels and the drivetrain. They connect the wheels to the differential or transaxle, ensuring that the rotational force generated by the engine is effectively transferred to each wheel. This connectivity enables synchronized wheel movement and coordination, ensuring stable handling, traction, and control of the vehicle.

Suspension Support:

Axle shafts also provide support to the vehicle’s suspension system. They are part of the suspension geometry and assist in maintaining proper wheel alignment and positioning. Axle shafts help bear the weight of the vehicle and absorb various forces and vibrations encountered while driving, contributing to a smoother and more comfortable ride. Additionally, they assist in managing weight transfer during acceleration, braking, and cornering, enhancing stability and handling characteristics.

Drivetrain Safety:

Axle shafts contribute to the safety of the vehicle’s drivetrain in several ways:

  • Wheel Power Distribution: By transmitting torque to each wheel, axle shafts ensure balanced power distribution. This helps prevent excessive wheel spin or loss of traction, improving overall stability and control, especially in challenging driving conditions such as slippery surfaces or uneven terrain.
  • Steering Control: Axle shafts play a role in the vehicle’s steering system, especially in vehicles with front-wheel drive or all-wheel drive configurations. They assist in transferring the rotational force to the front wheels, allowing for precise steering control and responsiveness.
  • Braking Performance: Axle shafts contribute to the effectiveness of the braking system. As the wheels decelerate during braking, the rotational force is transmitted through the axle shafts to the differential or transaxle, facilitating proper distribution of braking force to all wheels. This helps maintain stability, prevent skidding, and ensure efficient braking performance.

Overall Vehicle Safety:

Proper functionality of axle shafts isessential for the overall safety of the vehicle:

  • Preventing Catastrophic Failures: Well-maintained and properly functioning axle shafts reduce the risk of catastrophic failures that can lead to loss of control or accidents. Regular inspections and timely repairs or replacements help ensure that the axle shafts are in good condition and can withstand the forces and stresses encountered during normal driving.
  • Enhancing Stability and Handling: Axle shafts contribute to the stability and handling characteristics of the vehicle. By facilitating proper power transmission and wheel connectivity, they help maintain traction, prevent wheel slippage, and improve overall vehicle control during various driving maneuvers.
  • Supporting Suspension Components: Axle shafts provide support to other suspension components, such as control arms, struts, and springs. In doing so, they assist in maintaining proper suspension geometry, which is critical for safe and predictable handling. A well-functioning suspension system helps absorb shocks, maintain tire contact with the road, and provide a comfortable ride.
  • Contributing to Braking Efficiency: The proper functioning of axle shafts ensures effective distribution of braking force to all wheels, enhancing the vehicle’s braking performance and reducing stopping distances. This contributes to overall safety by allowing the driver to maintain control and respond to emergency situations more effectively.

Overall, axle shafts play a vital role in the functionality and safety of a vehicle. They enable power transmission, connect the wheels to the drivetrain, support the suspension system, and contribute to stable handling, traction, and braking performance. Regular maintenance, inspections, and prompt repairs or replacements are essential to ensure the proper functioning of axle shafts and maintain the safety of the vehicle’s drivetrain.

axle shaft

What are the components of an axle shaft assembly and their functions?

An axle shaft assembly consists of several components that work together to facilitate the transmission of power from the differential to the wheels. Each component plays a specific role in ensuring efficient power transfer and supporting the functionality of the axle shaft assembly. Here are the main components and their functions:

1. Axle Shaft:

The axle shaft itself is the main component of the assembly. It is a long, cylindrical shaft that connects the differential or transaxle to the wheels. The primary function of the axle shaft is to transmit rotational power from the differential to the wheels, enabling them to rotate and propelling the vehicle forward or backward.

2. Differential Side Gears or Output Shafts:

The axle shaft assembly is connected to the differential through side gears or output shafts. These are gear-like components that are part of the differential mechanism. The side gears or output shafts engage with the axle shafts, providing a solid mechanical connection. They allow the rotational force from the differential to be transmitted to the axle shafts, initiating power transfer to the wheels.

3. Constant Velocity (CV) Joints:

In many modern vehicles, especially those with front-wheel drive or independent suspension systems, the axle shaft assembly incorporates constant velocity (CV) joints. CV joints allow for smooth power transfer and accommodate changes in axle angle and length due to suspension movement and steering. They provide flexibility and reduce vibrations during power transmission. CV joints consist of inner and outer joints with ball bearings and protective boots filled with grease to maintain lubrication and prevent contamination.

4. Wheel Hubs:

At the outer ends of the axle shaft assembly, wheel hubs are attached. Wheel hubs serve as the connection points for the wheels. They provide a mounting surface for the wheels and ensure proper alignment and rotation. The axle shafts transmit the rotational power from the differential to the wheel hubs, causing the wheels to rotate. Wheel hubs often incorporate bearings to allow smooth rotation and reduce friction.

5. Bearings:

Bearings are crucial components within the axle shaft assembly. They support the rotating motion of the axle shafts and the wheel hubs. The bearings reduce friction and allow the axle shafts and wheel hubs to rotate freely. They are typically designed to withstand the forces and loads encountered during vehicle operation and contribute to smooth and efficient power transmission.

6. Seals and Retaining Devices:

To prevent the entry of contaminants and retain lubrication, seals are used in the axle shaft assembly. Seals are placed at various points along the assembly to protect the bearings, CV joints, and other critical components from dirt, moisture, and debris. Additionally, retaining devices such as circlips or snap rings are used to secure the axle shafts, CV joints, or bearings within their respective housings, ensuring proper alignment and preventing unintended disassembly.

These are the key components typically found in an axle shaft assembly. The combination of these components allows for effective power transmission, smooth rotation, support for the wheels, and protection of critical parts, ensuring the overall functionality and longevity of the axle shaft assembly.

China best Shaft, Motor Axis, Axle, Roller, Long Shaft, Long Roller   axle armChina best Shaft, Motor Axis, Axle, Roller, Long Shaft, Long Roller   axle arm
editor by CX 2023-11-06