China Professional China Manufacturer Auto Bearing/Ball Bearing Rear Axle Ball Bearing Shaft axle bar

Product Description

Why Choose US

1.Professional Bearing Manufacturer with 10 years export experience.
2.Large Stock.
3.Prompt Lead time.
4.SMALL order accepted.
5.A Wide Range of Qualified Bearing with Competitive price.
6.FREE Samples.
7.Brand Packagings accepted.
8.OEM service(Manufacturing according to your drawings and special request).

Brief Introduction

SHZ BEARING MANUFACTURING Co., Ltd is a professional bearing factory and trading company in HangZhou, ZheJiang .

The factory mainly produce Tapered roller bearing, Deep groove ball bearing, Wheel hub bearing, Clutch release bearing, Pillow block bearing, etc. After 10 years in the global market, SHZ Bearings get a high reputation among following Countries and regions: Russia, Algeria, Egypt, Italy, Korea, Mexico, Brazil, South Africa, Turkey, Iran, Pakistan, Singapore, Philipphines, USA and so on.

SHZ has accumulated more than 10 years in bearing innovation and production. SHZ persist with “Quality first, Innovation win, Service first” as perpose. “The pursuit of perfect quality, create first-class brand” as management policy, promoting the brand strategy,continuously improving product quality and brand connotation.

SHZ has the most advanced production equipments and strictest quality control system, it makes our products meet domestic and international standard.

Welcome all of customers visit our factory and cooperate for mutual benefit.

Product Description

 

Name

6-3480

6014

6214

6314

6414

6803

62214

62314

9491-3820

6017

6217

6317

6417

6806

160703

3201

9491

3202

B17-116

6019

6219

6319

6419

6808

1160304

3203

DG3062

6571

6220

6320

6420

6809

1160305

3204

DG358571

6571

6221

6321

606-2RS

6810

1180304

3205

DG357226

6571

6222

6322

607-2RS

3211

1180305

3206

DG357222

6571

6224

6324

608-2RS

3212

20703

3207

DG4 0571 1/27

6026

6226

6326

609-2RS

3213

20803

3208

B8-85

6571

6228

6328

626-2RS

3214

98305

3209

B17-99

6030

6230

6330

627-2RS

3215

B22-19

3210

B15-86

 

Packing

 

General Packing Methods:
A: Tube Package + Outer Carton + Pallet

B: Single Box + Outer Carton + Pallet

C: Tube Package + Middle Box + Outer Carton + Pallet
D: Single package+ Middle Box+ Outer Carton+ Pallet

E: According to your request

Production & Quality Control

 

 

Our Service & Exhibition Show

 

Payment & Deivery

  Delivery Time Payment Terms Shipping Method
Samle Order 1-3days 100% in Advance By Air
LCL Order 3-25days 30% Deposit and the Balance Paid
Before Shipment Or Against B/L Copy
By Air Or By Sea
FCL Order 25-45days By Air Or By Sea

 

FAQ

1. How many the MOQ of your company?
Our company MOQ is 1pc.

2. Could you accept OEM and customize?

YES, We can customize for you according to your sample or drawings.

3. Could you supply samples for free?

YES, We can supply samples for free, while you have o pay for the freight cost.

4. What is your terms of delivery?

We can accept EXW, FOB, CFR, CIF, etc. You can choose the 1 which is the most convenient cost effective for you.

5. Is it your company factory or Trade company?

We are factory, our type is Factory+Trade.

6. What is the warranty for your bearing?
2years, Customer need supply photos and send bearings back.

7. Could you tell me the packing of your goods?

Single Plastic Bag+Inner Box+Carton+Pallet, or according to your request.

8. Could you supply door to door service?

YES, by air or by express (DHL, FEDEX, TNT, EMS, SF7-10 days to your city)

9. Could you tell me the payment term of your company can accept?

T/T, Western Union, Paypal, L/C, etc.

10. What about the lead time for mass production?

Honestly, it depends on the order quantity and the season you place the order, our production capacity is 8*20ft containerseach month. Generally speaking, we suggest you start inquiry 3 to 4 months before the date you would like to get the products at your Country.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 0
Aligning: Non-Aligning Bearing
Separated: Unseparated
Rows Number: Single
Load Direction: Radial Bearing
Material: Bearing Steel
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle shaft

Can you explain the impact of axle shaft materials on weight and strength?

The choice of material for axle shafts has a significant impact on both weight and strength characteristics. Different materials offer varying levels of strength-to-weight ratios, which can influence the overall performance and durability of the axle shafts. Here’s an explanation of how axle shaft materials affect weight and strength:

  • Steel: Steel is a commonly used material for axle shafts due to its high strength and durability. Steel axle shafts are known for their excellent load-bearing capacity and resistance to bending and torsional forces. However, steel is relatively heavy compared to other materials, which can contribute to increased overall weight of the vehicle. The weight of steel axle shafts can affect the vehicle’s fuel efficiency and handling characteristics.
  • Alloy Steel: Alloy steel is a type of steel that has been mixed with other elements to enhance specific properties. By adding elements such as chromium, molybdenum, or nickel, alloy steel can achieve improved strength and hardness compared to traditional steel. This allows for the production of lighter and stronger axle shafts compared to conventional steel, providing a balance between weight reduction and structural integrity.
  • Aluminum: Aluminum is a lightweight material known for its excellent strength-to-weight ratio. When used in axle shafts, aluminum can significantly reduce the weight of the component, which can lead to benefits such as improved fuel efficiency and handling. However, aluminum axle shafts may not be as strong as steel shafts and can be more susceptible to bending or deformation under high loads or extreme conditions.
  • Composite Materials: Composite materials, such as carbon fiber reinforced polymers (CFRP), are increasingly being explored for axle shaft applications. CFRP composites offer high strength and light weight, making them attractive for weight reduction purposes. These materials can provide comparable or even superior strength compared to steel while significantly reducing the overall weight of the axle shafts. However, composite materials often come with higher production costs and may require specialized manufacturing techniques.

Overall, the choice of axle shaft material involves a trade-off between weight reduction and strength requirements. Steel offers excellent strength but comes with higher weight, while materials like aluminum and composites offer weight savings at the expense of some strength characteristics. The selection of the most suitable material depends on various factors, including the vehicle’s intended use, load requirements, cost considerations, and desired performance attributes.

In summary, the impact of axle shaft materials on weight and strength is significant. Steel provides high strength but adds weight, alloy steel offers a balance between strength and weight, aluminum reduces weight but may sacrifice some strength, and composite materials provide strength and weight advantages but at potentially higher costs. Manufacturers consider these factors when selecting axle shaft materials to achieve the desired balance of weight reduction, strength, and overall performance in vehicles.

axle shaft

Can you describe the maintenance and repair considerations for axle shafts?

Maintenance and repair of axle shafts are essential to ensure the proper functioning and longevity of a vehicle’s drivetrain. Regular maintenance and timely repairs can help prevent costly damages and maintain optimal performance. Here’s a detailed explanation of the maintenance and repair considerations for axle shafts:

Maintenance Considerations:

To keep the axle shafts in good condition, the following maintenance practices are recommended:

  • Inspections: Regularly inspect the axle shafts for signs of damage, such as cracks, bends, or excessive wear. Inspect the CV joints, bearings, seals, and retaining devices for leaks, deterioration, or looseness. Pay attention to any unusual noises, vibrations, or fluid leaks that may indicate potential issues.
  • Lubrication: Ensure proper lubrication of the axle shafts, CV joints, and bearings as recommended by the vehicle manufacturer. Lubrication helps reduce friction, prevent excessive wear, and extend the lifespan of the components. Check the lubricant levels and quality during routine maintenance and top up or replace the lubricant as needed.
  • Seal Protection: Inspect the seals around the axle shafts for damage or leaks. Damaged seals can allow contaminants, such as dirt, moisture, and debris, to enter the axle assembly, leading to premature wear and potential failure of the components. Replace damaged seals promptly to maintain proper protection.
  • Boot Inspection: If the axle shafts have constant velocity (CV) joints, inspect the protective boots regularly. The boots cover the CV joints and keep them protected and lubricated. Look for any signs of cracks, tears, or leaking grease. Damaged boots should be replaced promptly to prevent dirt and moisture from entering the CV joints.
  • Wheel Bearing Maintenance: If the axle shafts incorporate wheel bearings, follow the manufacturer’s recommendations for bearing maintenance. This may include periodic inspection, cleaning, re-greasing, or replacement of the wheel bearings to ensure smooth rotation and prevent excessive wear.

Repair Considerations:

If axle shaft issues are identified through inspections or during routine maintenance, the following repair considerations should be taken into account:

  • Evaluation and Diagnosis: When encountering axle shaft problems, it’s important to accurately diagnose the issue before proceeding with repairs. This may involve a visual inspection, listening for abnormal noises, performing tests, or seeking professional assistance to identify the specific cause of the problem.
  • Component Replacement: Depending on the nature and severity of the issue, repair options may vary. In some cases, replacing individual components such as CV joints, bearings, or seals may be sufficient. However, if the axle shaft itself is damaged or worn beyond repair, it may be necessary to replace the entire axle shaft assembly.
  • Professional Expertise: Axle shaft repairs can be complex and require specialized knowledge and tools. It is often recommended to seek the assistance of a qualified mechanic or technician who has experience working with axle shafts. They can provide proper diagnosis, perform repairs accurately, and ensure the correct installation of components.
  • Quality Parts: When replacing axle shaft components or the entire assembly, it is crucial to use high-quality parts that meet or exceed the manufacturer’s specifications. Using genuine or reputable aftermarket parts can help ensure proper fit, performance, and durability.
  • Alignment and Calibration: After axle shaft repairs or replacements, it may be necessary to perform wheel alignment and calibration procedures to ensure proper suspension geometry, wheel balance, and drivetrain synchronization. This helps maintain vehicle stability, tire wear, and overall performance.

By following these maintenance practices and considering the appropriate repair steps, owners can help keep axle shafts in optimal condition, minimize the risk of failure, and ensure the reliable operation of the vehicle’s drivetrain.

axle shaft

Can you explain the different types of axle shafts used in automobiles?

Automobiles utilize different types of axle shafts depending on the vehicle’s drivetrain configuration, suspension design, and intended use. Here are some of the commonly used axle shaft types:

1. Solid Axle Shaft:

A solid axle shaft, also known as a full-floating axle, is a single, rigid shaft that connects the differential to the wheels. It is commonly used in rear-wheel-drive vehicles, trucks, and off-road vehicles. Solid axle shafts provide robustness and strength, making them suitable for heavy-duty applications. They are capable of handling high torque loads and are relatively simple in design. However, solid axle shafts can contribute to a harsher ride and increased unsprung weight compared to other axle types.

2. Split Axle Shaft:

A split axle shaft, also referred to as a semi-floating axle, consists of two separate shafts that connect the differential to each wheel independently. Split axle shafts are commonly used in light-duty passenger vehicles and some rear-wheel-drive trucks. Each shaft supports the weight of its corresponding wheel and transmits torque. Split axle shafts offer a balance between strength and weight savings compared to solid axle shafts. However, they are generally not as robust as full-floating axles and may have lower load-carrying capacity.

3. Half Shaft:

A half shaft, also known as a drive shaft or CV axle, is commonly used in front-wheel-drive and all-wheel-drive vehicles. It connects the differential or transaxle to the front wheels, allowing power transmission and wheel rotation. Half shafts are typically equipped with constant velocity (CV) joints, which accommodate the articulation and angle changes during suspension movement and steering. CV joints enable smooth power transfer and minimize vibrations. Half shafts are usually lighter and more compact than solid or split axle shafts and are designed to handle the demands of front-wheel-drive systems.

4. Torque Tube Axle:

A torque tube axle is an older design that was used in some early automobiles. It consists of a single tube that encases the driveshaft and connects the differential to the wheels. The torque tube axle provides power transmission and support for the wheels but lacks independent suspension. This design has largely been phased out in modern vehicles, as it limits suspension flexibility and can contribute to a harsher ride quality.

5. Independent Rear Suspension Axle Shafts:

In vehicles with independent rear suspension (IRS), each wheel typically has its own axle shaft. These axle shafts connect the differential to the individual wheels and allow independent movement and suspension articulation. Independent rear suspension axle shafts are commonly found in modern passenger cars and some high-performance vehicles. They provide improved handling, ride comfort, and traction compared to solid axle shafts. The design and construction of these axle shafts may vary depending on the specific IRS system implemented in the vehicle.

It’s important to note that the specific axle shaft types used in automobiles can vary depending on the vehicle manufacturer, model, and drivetrain configuration. Additionally, advancements in technology and the increasing popularity of electric vehicles may introduce new axle shaft designs and materials in the future.

In summary, the different types of axle shafts used in automobiles include solid axle shafts, split axle shafts, half shafts, torque tube axles (less common in modern vehicles), and independent rear suspension axle shafts. Each type has its own advantages and is tailored to specific vehicle applications and requirements.

China Professional China Manufacturer Auto Bearing/Ball Bearing Rear Axle Ball Bearing Shaft   axle barChina Professional China Manufacturer Auto Bearing/Ball Bearing Rear Axle Ball Bearing Shaft   axle bar
editor by CX 2024-02-26