China Professional Horizontal Turning Long Axle Bush Shaft axle bolt

Product Description

We provide a comprehensive range of custom cost effective metal pressings and stamped parts precision metal services to customers around the globe. We not only work with all the typical metals, such as carbon steel, stainless steel, aluminum and copper alloys, but also rare metals like nickel and titanium alloys. We regularly carry out work for the following industries, as well as others. Machinery, Aerospace, Automotive, Metallurgy, Rail Transportation, New Energy, Shipbuilding, Petrochemical, Construction.

Our cost effective metal pressings and stamped parts precision metal services include cutting, press braking, plate rolling, hydraulic pressing, section bending, welding, and any other metal processing techniques.

Our factory equipped with all series of world-class CNC machine tools like: Germany Schiess Double-gantry boring and milling machine, Italy PAMA large boring mill, Japan CZPT horizontal boring and milling machine, China WZ large vertical turning center etc. Our advanced machine tool fleet allows us to complete even the largest machining projects ever known on earth.

Whatever your metalwork requirements, no task is too large, small, simple or complex for Openex. We pride ourselves on being 1 of the most professional and reliable suppliers, not just through price, but also creative capability to meet customer’s increasing diversified and specified demands in metalworking.

Being as a quality-oriented metal fabricator, we have equipped our factory with the best inspection tools. For example, our Leica AT901-LR laser tracker helps us to make sure the machine tools working in good order all the time that it can measure any large object within a sphere area of 80m in semi-diameter, the measurement accuracy is up to a micron. What’s more? We also have different types of CMM test machine, our biggest Zeiss measuring machines can work on component up to 7000x4000x3000mm with an accuracy of up to 0.43um. Being as one-station-shop company, we can handle all the other related process like: heat treatment, sand blasting, painting, x-ray testing, etc.

 

Why Choose Openex?

 

Openex Mechanical Technology Co., Ltd is 1 of very few companies that can provide comprehensive metalworking services to customers worldwide.
We have a vast range of world-class machine tools and advanced inspecting tools, and they have been successfully providing services for more than 30 of industrial giants which have ever listed or are still in the world top 500.
We use our knowledge and expertise to devise and employ solutions that not only meet, but exceed our customers’ expectations, and our wealth of industry experience allows us to offer suggestions to help customers optimize designs and find more efficient production procedures.

 

 

Certifications

We understand the importance of meticulous quality management and we have already passed certificates of ISO, CE, ASME, API, LR etc. Whatever your metalwork requirements are, no task is too large, no task is too complex for Openex. We pride ourselves on being 1 of the most professional and reliable suppliers, not just through price, but also creative capability to meet customer’s increasing diversified and specified demands in metalworking.

Contact Us

Application: Auto and Motorcycle Accessory, Machinery Accessory, Customized
Standard: GB, EN, China GB Code, JIS Code, TEMA, ASME, Customized
Surface Treatment: Customized
Production Type: Customized, Single or Batch Production
Machining Method: Forging, CNC Machining, Customized
Material: Steel, Alloy, Aluminum, Iron, Customized
Samples:
US$ 1500/Unit(s)
1 Unit(s)(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle shaft

Can you explain the impact of axle shaft materials on weight and strength?

The choice of material for axle shafts has a significant impact on both weight and strength characteristics. Different materials offer varying levels of strength-to-weight ratios, which can influence the overall performance and durability of the axle shafts. Here’s an explanation of how axle shaft materials affect weight and strength:

  • Steel: Steel is a commonly used material for axle shafts due to its high strength and durability. Steel axle shafts are known for their excellent load-bearing capacity and resistance to bending and torsional forces. However, steel is relatively heavy compared to other materials, which can contribute to increased overall weight of the vehicle. The weight of steel axle shafts can affect the vehicle’s fuel efficiency and handling characteristics.
  • Alloy Steel: Alloy steel is a type of steel that has been mixed with other elements to enhance specific properties. By adding elements such as chromium, molybdenum, or nickel, alloy steel can achieve improved strength and hardness compared to traditional steel. This allows for the production of lighter and stronger axle shafts compared to conventional steel, providing a balance between weight reduction and structural integrity.
  • Aluminum: Aluminum is a lightweight material known for its excellent strength-to-weight ratio. When used in axle shafts, aluminum can significantly reduce the weight of the component, which can lead to benefits such as improved fuel efficiency and handling. However, aluminum axle shafts may not be as strong as steel shafts and can be more susceptible to bending or deformation under high loads or extreme conditions.
  • Composite Materials: Composite materials, such as carbon fiber reinforced polymers (CFRP), are increasingly being explored for axle shaft applications. CFRP composites offer high strength and light weight, making them attractive for weight reduction purposes. These materials can provide comparable or even superior strength compared to steel while significantly reducing the overall weight of the axle shafts. However, composite materials often come with higher production costs and may require specialized manufacturing techniques.

Overall, the choice of axle shaft material involves a trade-off between weight reduction and strength requirements. Steel offers excellent strength but comes with higher weight, while materials like aluminum and composites offer weight savings at the expense of some strength characteristics. The selection of the most suitable material depends on various factors, including the vehicle’s intended use, load requirements, cost considerations, and desired performance attributes.

In summary, the impact of axle shaft materials on weight and strength is significant. Steel provides high strength but adds weight, alloy steel offers a balance between strength and weight, aluminum reduces weight but may sacrifice some strength, and composite materials provide strength and weight advantages but at potentially higher costs. Manufacturers consider these factors when selecting axle shaft materials to achieve the desired balance of weight reduction, strength, and overall performance in vehicles.

axle shaft

Can you provide examples of classic and modern vehicles that use various axle shafts?

Various classic and modern vehicles utilize different types of axle shafts depending on their design, drivetrain configuration, and intended use. Here are examples of classic and modern vehicles that use various axle shafts:

Classic Vehicles:

  • Ford Mustang (Classic): Classic Ford Mustang models, such as the first-generation Mustangs produced in the 1960s, typically featured solid rear axle shafts. These axle shafts were commonly made of forged steel and provided simplicity and durability in a rear-wheel drive configuration.
  • Jeep Wrangler (Classic): Classic Jeep Wrangler models, such as the Jeep CJ series, often utilized solid front and rear axle shafts. These axle shafts were designed to handle the demands of off-road driving and provided ruggedness and reliability in a four-wheel drive setup.
  • Volkswagen Beetle (Classic): The classic Volkswagen Beetle, produced from the 1930s to the 2000s, featured independent rear suspension with CV (constant velocity) axle shafts. These axle shafts allowed for smooth power delivery and improved handling characteristics.

Modern Vehicles:

  • Ford F-150 (Modern): The Ford F-150, a popular full-size pickup truck, utilizes various axle shaft configurations depending on the model and drivetrain options. Rear-wheel drive versions may employ solid axle shafts, while four-wheel drive models can feature independent front suspension with CV axle shafts and a solid rear axle.
  • Toyota Camry (Modern): The Toyota Camry, a mid-size sedan, typically incorporates front-wheel drive with independent front suspension and CV axle shafts. These axle shafts provide smooth power transfer and allow for improved maneuverability and efficiency.
  • Jeep Wrangler (Modern): The modern Jeep Wrangler continues to utilize solid front and rear axle shafts, maintaining its off-road capability and durability. The solid axle shafts contribute to the Wrangler’s exceptional ground clearance and ability to handle challenging terrains.
  • Tesla Model S (Modern): The Tesla Model S, an all-electric luxury sedan, utilizes electric motor-driven axle shafts instead of traditional mechanical axle shafts. These electric motor-driven axle shafts deliver instant torque to the wheels, providing impressive acceleration and performance.

It’s important to note that the specific axle shaft configurations and materials used in vehicles can vary even within the same model due to different trim levels, drivetrain options, and technological advancements. Additionally, aftermarket modifications can further alter the axle shaft setups in vehicles to accommodate specific needs and preferences.

When considering axle shafts for replacement or upgrades, it’s crucial to ensure compatibility with the vehicle’s make, model, and drivetrain configuration. Consulting with a professional mechanic or referencing the manufacturer’s specifications is recommended to ensure the correct axle shaft selection.

In summary, classic and modern vehicles utilize various axle shaft configurations, including solid axle shafts, CV axle shafts, and electric motor-driven axle shafts. These axle shafts are tailored to the specific needs of the vehicle, such as durability, off-road capability, power delivery, and efficiency.

axle shaft

What are the components of an axle shaft assembly and their functions?

An axle shaft assembly consists of several components that work together to facilitate the transmission of power from the differential to the wheels. Each component plays a specific role in ensuring efficient power transfer and supporting the functionality of the axle shaft assembly. Here are the main components and their functions:

1. Axle Shaft:

The axle shaft itself is the main component of the assembly. It is a long, cylindrical shaft that connects the differential or transaxle to the wheels. The primary function of the axle shaft is to transmit rotational power from the differential to the wheels, enabling them to rotate and propelling the vehicle forward or backward.

2. Differential Side Gears or Output Shafts:

The axle shaft assembly is connected to the differential through side gears or output shafts. These are gear-like components that are part of the differential mechanism. The side gears or output shafts engage with the axle shafts, providing a solid mechanical connection. They allow the rotational force from the differential to be transmitted to the axle shafts, initiating power transfer to the wheels.

3. Constant Velocity (CV) Joints:

In many modern vehicles, especially those with front-wheel drive or independent suspension systems, the axle shaft assembly incorporates constant velocity (CV) joints. CV joints allow for smooth power transfer and accommodate changes in axle angle and length due to suspension movement and steering. They provide flexibility and reduce vibrations during power transmission. CV joints consist of inner and outer joints with ball bearings and protective boots filled with grease to maintain lubrication and prevent contamination.

4. Wheel Hubs:

At the outer ends of the axle shaft assembly, wheel hubs are attached. Wheel hubs serve as the connection points for the wheels. They provide a mounting surface for the wheels and ensure proper alignment and rotation. The axle shafts transmit the rotational power from the differential to the wheel hubs, causing the wheels to rotate. Wheel hubs often incorporate bearings to allow smooth rotation and reduce friction.

5. Bearings:

Bearings are crucial components within the axle shaft assembly. They support the rotating motion of the axle shafts and the wheel hubs. The bearings reduce friction and allow the axle shafts and wheel hubs to rotate freely. They are typically designed to withstand the forces and loads encountered during vehicle operation and contribute to smooth and efficient power transmission.

6. Seals and Retaining Devices:

To prevent the entry of contaminants and retain lubrication, seals are used in the axle shaft assembly. Seals are placed at various points along the assembly to protect the bearings, CV joints, and other critical components from dirt, moisture, and debris. Additionally, retaining devices such as circlips or snap rings are used to secure the axle shafts, CV joints, or bearings within their respective housings, ensuring proper alignment and preventing unintended disassembly.

These are the key components typically found in an axle shaft assembly. The combination of these components allows for effective power transmission, smooth rotation, support for the wheels, and protection of critical parts, ensuring the overall functionality and longevity of the axle shaft assembly.

China Professional Horizontal Turning Long Axle Bush Shaft   axle boltChina Professional Horizontal Turning Long Axle Bush Shaft   axle bolt
editor by CX 2023-12-01